Discrete Mathematics

Relations

- Relations: Definition and Notation
- Properties of Relations
- Combining Relations
- Operations on Relations: Projection and Join

■ Equivalence Relations and Equivalence Classes
■ Partial Order

Imdad Ullah Khan

Relations on a Set

Relation

A (binary) relation from X to Y is a subset of $X \times Y$

Relation on a Set

A (binary) relation on a set X is a subset of $X \times X$ (relation from X to X)

Properties of Relations

Reflexive

A relation R on a set X is reflexive if $(a, a) \in R$ for every element $a \in X$

$$
A=\{1,2,3,4\}
$$

ICP 6-5 Which of the following relations are reflexive?

■ $R_{1}=\{(1,1),(1,2),(2,3),(3,3),(4,4)\}$

- $R_{2}=\{(1,1),(2,2),(2,3),(3,3),(4,4)\}$
\triangleright Yes
- $R_{3}=\{(1,1),(2,2),(3,3)\}$

Properties of Relations

Symmetric

A relation R on a set X is symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in X$

$$
A=\{1,2,3,4\}
$$

ICP 6-6 Which of the following relations are symmetric?

■ $R_{1}=\{(1,1),(1,2),(2,1),(3,3),(4,4)\}$
\triangleright Yes

- $R_{2}=\{(1,1)\}$
\triangleright Yes
- $R_{3}=\{(1,3),(3,2),(2,1)\}$
\triangleright No

Properties of Relations

Antisymmetric

A relation R on a set X is antisymmetric if $a=b$ whenever $(a, b) \in R$ and $(b, a) \in R$

$$
A=\{1,2,3,4\}
$$

ICP 6-7 Which of the following relations are antisymmetric ?

- $R_{1}=\{(1,1),(1,2),(2,1),(3,3),(4,4)\}$
- $R_{2}=\{(1,1)\}$
\triangleright Yes
- $R_{3}=\{(1,3),(3,2),(2,1)\}$
\triangleright Yes

A relation can be symmetric, antisymmetric, both or none

Properties of Relations

Symmetric

A relation R on a set X is symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in X$

Antisymmetric

A relation R on a set X is antisymmetric if $a=b$ whenever $(a, b) \in R$ and $(b, a) \in R$

ICP 6-8 Let $X=\{a, b, c, d\}$. Construct a relation on X that is
1 Symmetric and Antisymmetric
2 Symmetric but not Antisymmetric
3 Not Symmetric but Antisymmetric
4 Not Symmetric and not Antisymmetric

Properties of Relations

Transitive

A relation R on a set X is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

$$
A=\{1,2,3,4\}
$$

ICP 6-9 Which of the following relations are transitive ?

- $R_{1}=\{(1,1),(1,2),(2,2),(2,1),(3,3)\}$
\triangleright Yes
- $R_{2}=\{(1,3),(3,2),(2,1)\}$
\triangleright No
- $R_{3}=\{(2,4),(4,3),(2,3),(4,1)\}$
\triangleright No

Properties of Relations

Relations on the set of integers

- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$

ICP 6-10 Check if the relation has the given property

	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
reflexive	\checkmark	X				
symmetric	X	X				
anitsymmetric	\checkmark	\checkmark				
transitive	\checkmark	\checkmark				

Representing Relations

$$
A=\left\{a_{1}, a_{2}, \ldots a_{m}\right\} \quad \text { and } \quad B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

A relation R from A to B is represented by a

$$
m \times n \quad \text { Boolean matrix } \quad M_{R}=\left[m_{i j}\right]
$$

- One row for each element of A
- One column for each element of B

$$
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}
$$

Representing Relations

$$
R:=\{(A, D M),(A, C a / c),(B, D M),(C, D M),(C, \operatorname{Prog}),(D, \operatorname{Prog})\}
$$

$$
M_{R}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Representing Relations

Relation on a set is represented by a square matrix

$$
\begin{gathered}
A=\{1,2,3,4,6\} \\
R:=\{(x, y) \mid x \text { divides } y\} \\
M_{R}=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Representing Relations

$$
A=\{1,2,3,4\}
$$

ICP 6-11 Represent the relation Q as a matrix.

$$
Q=\{(1,1),(1,2),(2,2),(2,1),(3,3)\}
$$

Visualizing Properties of Relations

How does M_{R} look like when R is reflexive?

$$
M_{R}=\left(\begin{array}{llllll}
1 & * & * & * & * & * \\
* & 1 & * & * & * & * \\
* & * & 1 & * & * & * \\
* & * & * & 1 & * & * \\
* & * & * & * & 1 & * \\
* & * & * & * & * & 1
\end{array}\right)
$$

Visualizing Properties of Relations

How does M_{R} look like when R is symmetric?

$$
M_{R}=\left(\begin{array}{cccccc}
* & 0 & 1 & 0 & 1 & 1 \\
0 & * & 1 & 0 & 1 & 0 \\
1 & 1 & * & 0 & 0 & 1 \\
0 & 0 & 0 & * & 0 & 0 \\
1 & 1 & 0 & 0 & * & 1 \\
1 & 0 & 1 & 0 & 1 & *
\end{array}\right)
$$

M_{R} is symmetric

